For the problems below, approximate the acceleration of gravity as -10 m/s². (We're on Earth.) The point of this practice is not highly precise answers but rather building up your intuition and mental-math abilities. (And let's not bother putting a directional j aside each vector quantity.)

1. A ball was thrown upward at 40 m/s. (This is almost 90 mph, which is ridiculous. Some baseball players can throw a ball this fast, although not upward.) The data table below shows the velocity at one-second intervals.

time (s)	velocity (m/s)
0.0	40.00
1.0	30.00
2.0	20.00
3.0	10.00
4.0	0.00
5.0	-10.00
6.0	-20.00
7.0	-30.00
8.0	-40.00

- a. At what time has the ball reached its peak?
- b. At its peak, what is the ball's acceleration?
- c. What is the ball's displacement in that first second?
- d. What is the ball's total displacement, over the 8.0 seconds?
- e. What total distance (not displacement) does the ball travel, over the 8.0 seconds?
- 2. A ball was thrown upward at 60 m/s.
 - a. How many seconds does it take to reach its peak?
 - b. How many seconds does it take to return to its starting height?
 - c. What is the acceleration of the ball at 4.0 seconds?
 - d. What is the velocity of the ball at 8.0 seconds?
 - e. How high does the ball travel? (This is another way of asking for its displacement, when it's at its peak.)
 - f. What is the displacement of the ball between t = 1.0 and t = 3.0 seconds?
- 3. A ball was thrown downward at 20 m/s, over a deep hole.
 - a. What is the velocity of the ball at 3.0 seconds?
 - b. What is the acceleration of the ball at 3.0 seconds?
 - c. What is the displacement of the ball at 3.0 seconds?
- 4. A ball was thrown upward at 25 m/s.
 - a. How many seconds does it take to reach its peak?
 - b. At its peak, what is the ball's acceleration?
 - c. At its peak, what is the ball's velocity?
 - d. What is its velocity upon returning to its original height?
 - e. How high does the ball travel?
 - f. What is the ball's displacement at 4.0 seconds?